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Laboratory measurements of the post-breaking velocity field due to unsteady deep-
water breaking are presented. Digital particle image velocimetry (DPIV) is used
to measure the entire post-breaking turbulent cloud with high-resolution imagery
permitting the measurement of scales from O(1 m) down to O(1 mm). Ensemble-
averaged quantities including mean velocity, turbulent kinetic energy (TKE) density
and Reynolds stress are presented and compare favourably with the results of Melville,
Veron & White (J. Fluid Mech., vol. 454, 2002, pp. 203–233; MVW). However, due
to limited resolution, MVW’s measurements were not spatially coherent across the
turbulent cloud, and this restricted their ability to compute turbulent wavenumber
spectra. Statistical spatial quantities including the integral length scale L11, Taylor
microscale λf and the Taylor microscale Reynolds number Reλ are presented.
Estimation of an eddy viscosity for the breaking event is also given based on
analysis of the image data. Turbulent wavenumber spectra are computed and within
12 wave periods after breaking exhibit what have been termed ‘spectral bumps’ in the
turbulence literature. These local maxima in the spectra are thought to be caused by
an imbalance between the transport of energy from large scales and the dissipation
at small scales. Estimates of the dissipation rate per unit mass are computed using
both direct and indirect methods. Horizontally averaged terms in the TKE budget
are also presented up to 27 wave periods after breaking and are discussed with regard
to the dynamics of the post-breaking flow. Comparisons of the TKE density in the
streamwise and cross-stream planes with the three-dimensional full TKE density are
given in an appendix.

1. Introduction
Wave breaking at the ocean surface mixes surface waters, generates currents, limits

the height of surface waves and dissipates surface-wave energy. Increased knowledge
of the structure and evolution of the turbulent field in this regime is essential in order
to further understand the role of breaking in air–sea interaction and in the formation
of the marine boundary layer. The intermittent nature of breaking makes detailed
field measurements with high spatial and temporal resolution very difficult. The
laboratory provides us with a well-controlled environment in which high-precision,
high-resolution measurements can be conducted in order to better understand the
kinematics and dynamics of breaking and their relationship to breaking-generated
turbulence. Progress in breaking-wave research has been reviewed several times in
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recent years (Banner & Peregrine 1993; Melville 1996; Duncan 2001). However, we
know very little about the turbulence generated by unsteady deep-water breaking
waves, especially when compared to quasi-periodic breaking waves in shallow water.

In introducing the relevant literature we will concentrate on unsteady deep-water
breaking. However, related literature on quasi-steady or quasi-periodic breaking in
shallow water may be relevant for specific processes. This literature includes Duncan
(1981, 1983), Lin & Rockwell (1995), and Chang & Liu (1998, 1999).

Bonmarin (1989) used cinematography of unsteady breaking waves to describe
the various stages of breaking. A number of geometrical parameters were used to
describe the asymmetry and steepness of the waves as they approached breaking.
The shape of the plunging jet and the subsequent splash-up were also investigated,
giving insight into the source of the post-breaking vorticity in relation to the plunging
jet.

Rapp & Melville (1990; RM) measured turbulence generated by unsteady breaking
waves in the laboratory. Simple flow visualization using dye permitted estimates of
the extent of mixing by breaking as well as the rate of growth of the turbulent patch.
They employed laser Doppler anemometry (LDA) on a regular grid in a number of
realizations of the flow. While the grid spacing was coarse compared to modern digital
particle image velocimetry (DPIV) standards, a coherent vortex structure was seen in
the ensemble-averaged velocity field. Wave energy budgets showed that approximately
90 % of the energy from the breaking event was dissipated within four wave periods.
The turbulent kinetic energy (TKE) was found to subsequently decay like t−1, where
t is the time after breaking. It was shown later by Lamarre & Melville (1991) that up
to 50 % of the wave energy may be lost through work done in entraining air against
buoyancy forces.

Perlin, He & Bernal (1996) used particle image velocimetry (PIV) and high-speed
imagery techniques to measure the fine-scale structure of plunging breaking waves
as the jet approaches the free surface. The maximum jet velocity was found to be
approximately 30 % larger than the corresponding wave phase speed.

Veron & Melville (1999) used a coherent acoustic Doppler profiler to measure
turbulence generated by unsteady breaking waves in both the laboratory and the field.
Measurements of u(x, t), the horizontal velocity component, were obtained at a depth
of 10 cm below the mean water level in the direction of propagation. The turbulence
was defined to be the residual velocity after the surface-wave-induced motions were
filtered out. Evaluation of the wavenumber spectra showed the existence of an inertial
sub-range with the dissipation rate ε decaying as t−n, with n varying between 1 and
1.25. Gemmrich & Farmer (2004) also used a coherent acoustic Doppler profiler in
the field and found the dissipation rate to decay as t−4.3.

Melville et al. (2002; MVW) used DPIV to investigate the post-breaking velocity
field under unsteady deep-water breaking waves in the laboratory. In order to
describe the large-scale flow with sufficient resolution, a mosaic of images was used
to reconstruct the ensemble-averaged velocity field. Analysis of this velocity field
showed the existence of a large coherent vortex which propagated downstream under
the influence of its image vortex above the surface. The TKE was found to decay with
a t−1 dependence. These findings are consistent with the earlier LDA measurements
of RM. The experiments of MVW were not specifically designed to measure the TKE
budget, but with the exception of the pressure-work terms, an estimate of the balance
of the terms was possible with an assumption of inertial-scale isotropy being used
to compute the dissipation rate, ε. Comparison of horizontally integrated terms in
the budget after the cessation of active breaking implied that a simple relationship
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between production and dissipation in the turbulent cloud did not apply and that a
likely balance between advection and turbulent transport existed. The dissipation rate
evaluated from DPIV data was shown to agree with earlier estimates from Veron &
Melville (1999).

The numerical simulation of breaking surface waves depends on results generated
in the laboratory to help drive and validate models. Chen et al. (1999) conducted
detailed two-dimensional simulations of plunging breaking waves past the point of
impact. It was found that approximately 80 % of the wave energy was dissipated
within three wave periods, and the temporal evolution of the energy was found to
have a t−1 dependence, consistent with RM and MVW. The authors noted that
their simulations were strictly two-dimensional, while the actual flows are inherently
three-dimensional, perhaps accounting for the lower amount of energy lost ( ≈ 80%)
as compared to RM ( ≈ 90%).

Watanabe, Saeki & Hosking (2005) have used large-eddy simulations (LES) to
investigate vortex dynamics and kinematics in breaking shoaling waves. While the
generation and evolution of vorticity in breaking flows is of great interest, such
detailed analysis is currently beyond the scope of available measurements and is not
pursued in this paper.

Sullivan, McWilliams & Melville (2004) developed a stochastic model of breaking
waves which was evaluated through the use of direct numerical simulation (DNS). The
Navier–Stokes equations were modified with an additional body force representing
the local acceleration of the fluid due to breaking. The forcing was empirically defined
and based on the laboratory results of RM and MVW. The simulations were run
with breaking accounting for varying fractions of the total momentum flux across
the surface, with the remaining fraction due to viscous stresses. It was found that
a small fraction of active breaking caused significant turbulent mixing and vertical
transport of horizontal momentum, with a strong dependence of the roughness length
of the turbulent surface layer on the fraction of the momentum flux supported
by breaking. Sullivan, McWilliams & Melville (2007) have recently extended this
approach to include both breaking and Langmuir turbulence, demonstrating the
significant interactions and similarities between the two phenomena.

An improved knowledge of the breaking at the ocean surface requires an
understanding of the kinematics and dynamics of individual breakers as well as
measurements of the statistics of breaking. While the statistics can only be measured
in the field, detailed studies of the kinematics and dynamics can be carried out in the
laboratory. The ability to make broadband measurements of breaking-wave-generated
turbulence is of importance in understanding its role in upper ocean kinematics and
dynamics. Advances in imaging and computer technology, even since the recent
work of MVW, permit DPIV measurements with improved dynamic range in the
wavenumber domain over larger ensembles of measurements.

We have revisited the experiments of RM and MVW using high-resolution digital
imagery to capture a wide range of scales and a larger number of events in each
ensemble to provide improved separation between the mean and turbulent fields while
reducing errors in higher-order turbulent statistics. The resultant data set permits the
measurement of ensemble-averaged quantities, wavenumber spectra and the structure
of the turbulence and improved estimates of the TKE budget.

In § 2 we describe the experimental set-up. We present ensemble-averaged flow
variables in § 3, measurements of turbulent length scales in § 4, wavenumber spectra
in § 5 and terms in the TKE budget in § 6. In § 7 we discuss the significance of these
results.
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2. Experimental set-up
2.1. Breaking-wave generation

The experiments were carried out in the glass wave channel in the Hydraulics
Laboratory at the Scripps Institution of Oceanography. The tank is 0.5 m wide, 1 m
deep and 30 m long. See Drazen (2006) or Drazen, Melville & Lenain (2008; DML)
for further details. The tank was filled to a working depth of 0.6 m with fresh water.
A beach of 6◦ slope at the far end of the tank was coated with a thick fibrous mat
to help dissipate surface wave energy.

Breaking waves were generated using the dispersive-focusing method first proposed
by Longuet-Higgins (1974) and exploited by RM and others. A given wave packet
has separate frequency components spread across a normalized bandwidth of �f/fc

centred at a frequency of fc. The location and time of breaking according to linear
theory are given by xb and tb, respectively.

Following Loewen & Melville (1991), we assigned a constant slope to each
component of the wave packet rather than the constant amplitude formulation of
RM.

The centre frequency of the wave packet was fc =1.08 Hz, the non-dimensional
bandwidth was �f/fc = 0.75, and the non-dimensional distance to breaking was
xbkc = 40.5. While the packet is long, the individual waves within the packet can be
considered to be deep-water waves (kcH = 2.8, where kc is the wavenumber of the
centre packet component and H the mean water depth). The non-dimensional time
of breaking was σctb = 118.9, where σc = 2πfc is the radian centre frequency of the
wave packet. The breaking wave generated was a plunging wave with an input slope
of S = 0.36, which is the maximum slope at focussing according to linear theory.
The need to generate a turbulent cloud that stayed within the measurement region
for approximately 60 wave periods motivated the choice of parameters. A series
of complementary experiments described by Drazen (2006) and Drazen, Melville &
Lenain (2008) were designed to measure the dissipation rate of breaking surface
waves over a larger range of parameter space. Measurement of quantities related to
the bulk properties of the flow, including wave potential energy, wave energy fluxes
and wave dissipation rates, along with more complete experimental details are given
in those references.

2.2. Digital particle image velocimetry

The experiments described here were conducted within a 3.11 m long window starting
8.6 m from the wave paddle. We conducted two sets of experiments in the vertical
longitudinal (x−z) plane, the first of which was designed to directly image the
largest scales of the flow. A second set of experiments investigated the effects of
increasing resolution on measurement of the turbulent fields, through the use of four
overlapping windows. Measurements of the velocity field in the transverse (y−z) plane
were conducted at four locations in order to quantify the cross-stream structure of the
flow as well as provide measurements of the three components of velocity, (u, v, w),
at the intersection of the longitudinal and transverse planes.

2.2.1. Digital particle image velocimetry system

The DPIV system utilized a 200 mJ Nd:YAG laser (New-Wave Gemini) to create
a light sheet introduced from below the tank which was redirected to the vertical
plane via a front-surface mirror. The light-sheet-generating optics (Dantec Dynamics
80 × 66, 80 × 64) created a 60◦ beam with a focussing distance of 0.7–3 m. The light
sheet was reflected by a mirror to generate a light sheet in the longitudinal or transverse
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planes (see Drazen 2006 for further details). Silver-coated glass (14 μm, 1.7 g cm−3)
or ceramic (100 μm, 1.01 g cm−3) spheres (Potters Industries, AG-SL150-30-TRD,
SH400S33) were used to seed the flow. The inside of the far wall of the test section
(relative to the camera in the longitudinal plane) was painted with flat black paint to
prevent reflections back to the camera.

Laser timing, triggering, image recording and image processing were performed
through a commercially available DPIV software package, PixelFlow (VioSense
Corporation). Data were recorded for 89 s, and there was a delay of approximately
10 min between experiments during which time the images were written to hard disk
and the residual turbulence in the channel decayed.

The laser beam has a Gaussian intensity profile, and when spread across such a
large region there are observable variations in the light-sheet intensity. In order to
remove this non-uniform background intensity the images were first low-pass filtered
using a method similar to the image pre-processing technique used by Willert (1997)
without the subsequent binarization of the image.

Optical calibration of the system was performed using a Plexiglas sheet placed
within the measurement plane. For the large-scale longitudinal measurements, two
rows of 2 mm diameter holes were spaced 10 cm horizontally across the field of view.
For the mosaic DPIV and DPIV in the transverse plane, a smaller grid with lines
etched every 5 cm was used. The cameras were placed slightly below the water level
and angled upwards in order to image the intersection of the light sheet with the
free surface. The measured control points allowed for rectification of the images to
account for any perspective distortion or refraction at the air–glass–water interface,
through use of a projective or third-order polynomial transformation (Gonzalez &
Woods 2002).

2.2.2. The longitudinal plane (full-field)

To directly capture the entire turbulent velocity field in the longitudinal plane a 3 Hz
4024 × 2560 charged-couple device (CCD) camera (VDS Vosskühler CCD-11000) with
a 50 mm f1.4 lens was used, yielding a final resolution of 0.5 mm pixel−1. The long
axis of the CCD was aligned in the x-direction. A light sheet approximately 2 m long
at the mean water level and 0.6 m in height was generated along the centreline of the
tank. The seeding particles were 100 μm in diameter, and the thickness of the sheet
varied from 3 mm at the bottom of the tank to 6 mm at the surface, which ensured
that particles stayed within the sheet between a pair of images.

Two sets of runs were taken using a frame-straddling approach in which the time
between laser pulses �t was less than the reciprocal of the camera frame rate. The
first run had 41 repeats with a time difference between image pairs of �t = 20 ms,
and a second had 32 repeats using a time difference of �t = 30 ms. Concerns over
the existence of peak-locking (Raffel, Willert & Kompenhans 1998) motivated the
two separate sets. These two sets were combined to yield an ensemble of 73 repeats
in the longitudinal plane, which enabled measurement of the relative error for a
projected ensemble of approximately 40 repeats for the transverse plane and mosaic
experiments. The normalized error in the magnitude of the velocity in the x-direction
at the Nth repeat relative to the N = 73 ensemble is given by

δuN =

√√√√∑
kl

∣∣uN
kl − u73

kl

∣∣2∣∣u73
kl

∣∣2 , (2.1)
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where the sum is over all of the k × l vectors in the matrix. The normalized error
of second-order and third-order quantities at the Nth repeat relative to the N = 73
ensemble are given by

δQN =
∑

kl

∣∣QN
kl − Q73

kl

∣∣∣∣Q73
kl

∣∣ , (2.2)

where Q is either 1/2(〈u2〉 + 〈w2〉) or 〈u3〉. The normalized mean velocity magnitude
converges as N−0.61, the normalized TKE density as N−0.55 and the normalized third-
order correlation term as N−0.50.

2.2.3. The longitudinal plane (mosaic)

The full-field DPIV measurements permitted direct measurement of a number of
scales of the flow, with the focus on the largest scales. Due to the resolution of
the camera we were therefore unable to resolve the smallest scales of the flow. We
then extended the resolution of the measurements in the longitudinal plane using
a technique similar to that used by MVW. A mosaic of measurements was taken
with four overlapping images in the x-direction yielding an increase in resolution to
0.19 mm pixel−1. The camera was mounted on a linear track parallel to the tank, with
the long axis of the camera sensor orientated in the z-direction. In order to insure
that these measurements were all made in the same plane the laser sheet illuminated
the same region as the full-field measurements despite the smaller field of view.

The �t was kept fixed at 30 ms, and 14 μm particles were used to seed the
flow. Thirty-eight realizations of the flow were collected for each window, yielding
normalized errors of 6.6 % for the velocity, 11 % for the TKE density and 65 %
for the third-order correlations when referred to the ensemble average using all 73
realizations (see (2.1) and (2.2)).

Because the light sheet illuminated the entire full-field region, the overall
illumination level within the fourth window was reduced. The camera gain was
increased to attempt to compensate for this. Upon analysing the results it was found
that due to a low signal to noise ratio in the images the measurements taken within
this fourth window exhibited more noise than the previous windows for a given run.
However, the turbulent cloud did not enter the fourth window for (t − tb)/T < 12.78.
We therefore restricted our analysis of the mosaic DPIV to the first three windows.

2.2.4. The transverse plane

A series of measurements in the transverse plane was conducted at four
locations, x =[8.98, 9.22, 9.42, 9.91] m, which correspond to (x−xb)/λc =[0.39, 0.57,

0.73, 1.09], where λc is the wavelength of the centre wave component. In the transverse
plane a 1024 × 1024 camera (Uniq UP1830) enclosed in a watertight housing was
placed in the water 1.27 m downstream of the light sheet and run at a frame rate of
24 Hz. The camera was angled up slightly to ensure that the surface was within the
field of view using a 12.5 mm f1.8 lens for a resolution of 0.5 mm pixel−1. The need
to directly image the entire width of the tank and the square image sensor meant
that the maximum depth imaged was approximately z/λc = −0.34. However, this is
deeper than the depth to which particles are mixed down by breaking (see figure 1b).
The seeding particles are the same as those used in the mosaic DPIV. The light-sheet
thickness was 4 mm and �t = 30 ms. The surface-wave-induced velocities can cause
large out-of-plane motions, which was only an issue for the furthest downstream
location (4) at (t − tb)/T =3.42, 5.58. A minimum of 37 realizations were collected
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Figure 1. (a) Normalized TKE at 5.58 wave periods after breaking along with the
Et = 8.22 × 10−5 contour denoted in white (see (3.10)). (b) The ensemble-averaged DPIV
images for 41 realizations at t∗ = 5.58, showing the particles mixed down from the surface. The
energy density contour from (a) is overlaid on the mean image in white. The vertical extent of
particles mixed down from the surface by breaking correlates well with the turbulent cloud.

for each window with normalized errors of 6.8 % for the mean velocity field, 12 %
for the TKE and 67 % for the turbulent energy flux.

2.2.5. Digital particle image velocimetry processing

Processing of the rectified image pairs was done using a multi-window method
similar to DPIV-extended (DPIVE) described by MVW. The method starts with
a window of 32 × 32 pixels (75 % overlap), and subsequent passes are made with
smaller windows (16 × 16, 50 % overlap). Between each step the velocity field is
corrected for outliers, and the final velocity field is smoothed with a 3 × 3 median
filter before converting to laboratory coordinates. All sub-pixel interpolation is done
using three-point Gaussian interpolation.

Determination of the surface profile for the cases considered is a simple matter
when applied to an ensemble-averaged image. The interface between the laser sheet
and the water surface has the brightest average return, and thus the free surface is
the brightest point in each column (see figure 1b). The subsequent profile is then
smoothed using a 32 pixel running mean filter. After processing has been performed,
the values above the free surface are set to zero. Due to the configuration of the light
sheet, non-illuminated regions in both the longitudinal and transverse planes exist.
The vectors within these regions were also set to zero.

When dealing with a large field of view, difficulties arise in finding particles with
an optimum size distribution and density. If the particle images are too small for
the sub-pixel estimator, then peak-locking can result (Raffel et al. 1998) in which the
particle displacement is biased towards an integer value. The amount of peak-locking
is dependent on the sub-pixel estimator and the diameter of the individual particle
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image. The cause of peak-locking is the inability of the chosen sub-pixel estimator to
accurately resolve the peak of the cross-correlation.

Chang & Liu (2000) found bias errors which were as large as the turbulent
intensities and thus called it ‘psuedo-turbulence’. They attributed the cause of this
psuedo-turbulence in their data to a bias error similar to this peak-locking effect. The
resolution of our large-scale measurements in the longitudinal plane is lower than
that of Chang & Liu (2000); however, we have larger seeding particles and a longer
�t which reduces this error.

As described in the experimental set-up, peak-locking in our measurements was
a concern. Inspection of the velocity field showed that the peak-locking was only
measurable outside the turbulent cloud and was an order of magnitude smaller than
the TKE intensity within the cloud. Thus the bias error introduced by the peak-
locking does not affect our measurements, and when presenting any horizontally or
vertically averaged quantities, the data will be windowed to only include the spatial
extent of the turbulent cloud. The horizontal locations of these limits can be seen in
figure 5 as solid vertical white lines. The pattern that arises outside of the turbulent
cloud as seen in figures 4–6 at t∗ = 3.42 is not entirely due to peak-locking. The low-
pass filtering performed on the images enhances a pattern generated by the reflection
of the laser light from the free surface. It is thought that the change in reflected light
from one image to the next in a pair causes this pattern to arise in the processed
data. We have computed root mean square (r.m.s.) values of (u, w) at four discrete
locations corresponding to peaks and valleys of the pattern at t∗ = 3.43. The average
r.m.s. values are (4.1 mm s−1, 3.3 mm s−1) at the peaks and (3.1 mm s−1, 2.6 mm s−1) at
the valleys. The maximum uncertainty is therefore (1 mm s−1, 0.7 mm s−1) within this
region. An average r.m.s. value within the cloud is approximately 20 times larger.
While the uncertainty caused by this pattern is small, processing of the data is
windowed in order to minimize any effect of noise on the results.

2.3. Turbulent kinetic energy density

The turbulence was computed using a Reynolds decomposition of the velocity field
with mean quantities determined by an ensemble average, denoted by angle brackets.
The instantaneous field is denoted by ũi(x, t) =Ui(x, t) + ui(x, t), with Ui(x, t) ≡
〈ũi(x, t)〉 the ensemble-averaged velocity and ui(x, t) the turbulent velocity field.
Unless otherwise stated, all means are computed using a ensemble average, and these
two terms will be used interchangeably.

The evolution of the kinetic energy density of the turbulence is given by

∂

∂t

(
1

2
〈uiui〉

)
+ 〈uj 〉 ∂

∂xj

(
1

2
〈uiui〉

)

= − ∂

∂xj

(
1

ρ
〈ujp〉 +

1

2
〈uiuiuj 〉 − 2ν 〈uisij 〉

)
− 〈uiuj 〉 Sij − 2ν 〈sij sij 〉 (2.3)

(Tennekes & Lumley 1972). Here Sij is the mean strain rate,

Sij =

(
∂Ui

∂xj

+
∂Uj

∂xi

)
, (2.4)

and sij the fluctuating rate of strain,

sij =
1

2

(
∂ui

∂xj

+
∂ui

∂xj

)
. (2.5)
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The terms on the left-hand side of (2.3) represent the evolution and the advection
of the TKE in the turbulent cloud. The first three terms on the right-hand side of (2.3)
describe the transport of the turbulence by pressure work, turbulence and viscosity.
The fourth term is the production and plays the complementary role of the same
term in the evolution of the kinetic energy density of the mean flow. The final term
on the right-hand side is the dissipation and accounts for the ultimate dissipation of
energy into heat through the action of viscosity.

3. Ensemble-averaged flow quantities
Unless otherwise stated, all quantities will be normalized using the characteristic

centre wavelength λc, period Tc or the phase speed Cc of the wave packet. The centre
component refers to the quantity associated with the centre frequency of the wave
packet, fc. The origin will be defined as the time and location of breaking, and the
normalized length and time scales are

x∗ = (x − xb)/λc, (3.1)

z∗ = z/λc, (3.2)

t∗ = (t − tb)/Tc. (3.3)

In the longitudinal plane, the origin in the vertical direction is at the quiescent mean
water level.

3.1. Mean velocity

Figure 2 shows the mean velocity field in the longitudinal plane. Figure 3 shows the
mean flow streamlines superimposed on the magnitude of the mean velocity field.
Times shown are from 3.42 to 58.86 wave periods after breaking. At t∗ =3.42 the
surface waves passing through the measurement region dominate the velocity field.
By t∗ =12.78 there is still evidence of surface waves, but a clearly defined vortex
has formed at x∗ ≈ 0.6. As noted by MVW this vortical region grows in time and
slowly propagates downstream under the influence of its image vortex above the
surface. We can also see residual surface waves in the tank at t∗ =50.22 and 58.86
with a frequency of f ≈ 1.8−2 Hz. These are consistent with high-frequency free
waves around the second harmonic generated by the breaking event propagating
downstream through the measurement window (cf. RM).

The contours of the streamfunction Ψ show a well-defined coherent vortex at
t∗ =12.78. Assuming the mean flow to be incompressible and two-dimensional the
streamlines were computed using

Ψ =

〈∫
(ũ dz − w̃ dx)

〉
, (3.4)

where (ũ, w̃) are the horizontal and vertical components of the velocity field. While
surface waves are still in the tank, the vertical flow induced by the passing waves
dominates the transverse flow field. Figures describing the transverse flow fields may
be found in Drazen (2006). After the waves have propagated out of the region the
mean flow exhibits transverse oscillations at t∗ = 43.02 at all streamwise locations
at which measurements were made in the cross-stream plane. These near-surface
fluctuations are also seen at t∗ = 58.86 and may be caused by the residual surface
waves propagating within the tank. As the core of the vortex nears the fourth
transverse location a downward flow is seen consistent with the clockwise rotation of
the vortex in the x−z plane. The magnitude of the velocity field and the corresponding
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Figure 2. The normalized mean velocity field at t∗ = [3.42, 12.78, 27.18, 35.10, 43.02, 50.22,
58.86]. The velocity fields are decimated by a factor of 10 in the horizontal direction and by a
factor of 5 in the vertical direction for ease of interpretation. The velocity field induced by the
surface waves is seen to be dominant up to approximately 12 wave periods after breaking.

streamlines do not exhibit any strong gradients in the y-direction, consistent with a
flow that is two-dimensional in the mean.

3.2. Vorticity

The magnitude of the mean vorticity of the flow is shown in the left-hand column of
figure 4. The vorticity is computed by calculating the circulation around a 3 × 3 grid
divided by the area enclosed. Positive vorticity here corresponds to a counterclockwise
rotation, and the large region of negative vorticity seen is consistent with the coherent
structure seen in RM and MVW. A thin layer of positive vorticity is found at the
surface and is thought to be an artefact of processing due to the proximity of the free
surface.
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Figure 3. The normalized magnitude of the mean velocity field superimposed with the flow
streamlines at the same times. The coherent vortex generated by the breaking process is clearly
seen here after approximately 12 wave periods.

The mean square vorticity (twice the enstrophy) is given by

W = 〈(Ω + ω)2〉 (3.5)

= Ω2 + 〈ω2〉 (3.6)

= Wm + Wt , (3.7)

where ω is the magnitude of the out-of-plane component of vorticity and Ω = 〈ω〉;
Wm is the squared mean vorticity; and Wt the mean squared turbulent vorticity.

We show the mean squared turbulent vorticity in the longitudinal plane in the
right-hand column of figure 4. If the flow was fully resolved we could consider the



96 D. A. Drazen and W. K. Melville

0.1
0

–0.1
–0.2

0.1
0

–0.1
–0.2

t∗ = 3.42z∗

0.1
0

–0.1
–0.2

0.1

–0.1
–0.2

t∗ = 12.78z∗

0.1
0

–0.1
–0.2

0.1

–0.1
–0.2

t∗ = 27.18z∗

0.1
0

–0.1
–0.2

0.1

–0.1
–0.2

t∗ = 35.10z∗

0.1
0

–0.1
–0.2

0.1

–0.1
–0.2

t∗ = 43.02z∗

0.1
0

–0.1
–0.2

0.10.04 0.03

0.02

0.01

0

0.01

–0.01

–0.04

–0.1
–0.2

t∗ = 50.22z∗

0.1
0

0

0

0

0

0

0
–0.1
–0.2

0.5 1.0 1.5

0.1

–0.1
–0.2

t∗ = 58.86z∗

x∗
0.5 1.0 1.5

x∗

Figure 4. The left-hand column is the normalized magnitude of the vorticity of the mean
flow, and the right-hand column is the normalized mean squared turbulent vorticity, Wt , or
twice the enstrophy. The vorticity is mainly negative (corresponding to clockwise rotation) and
deepens slowly as the turbulent cloud propagates downstream. The squared turbulent vorticity
is concentrated in regions of high TKE and rapidly decreases with time. The pattern in the
background which dominates at t∗ = 3.42, and less so for later t∗, is thought to be caused by
a pattern generated when the light sheet reflects off the free surface (see § 2.2.5 for further
discussion).

mean squared turbulent vorticity to be a proxy for the dissipation. At the current
resolution we cannot resolve the dissipative scales comparable to the Kolmogorov
length scale ηk (not to be confused with the surface elevation η). We can see however
that the region over which it is significant is well correlated with the turbulent cloud
and is advected downstream with the coherent structure generated by breaking.

The streamwise component of the mean squared turbulent vorticity measured in
the transverse plane is approximately homogeneous across the channel and reinforces
the notion that the flow after t∗ = 3.42 is two-dimensional in the mean.

3.3. Kinetic energy

The mean kinetic energy density of the flow is given by

E =
1

2

〈
(Ui + ui)

2
〉

(3.8)
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Figure 5. The left-hand column is the normalized kinetic energy density of the mean flow.
The right-hand column is the normalized TKE density. The turbulent cloud can be seen to
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=
1

2
U 2

i +
1

2

〈
u2

i

〉
(3.9)

= Em + Et, (3.10)

where Em and Et are the respective kinetic energy densities of the mean flow and the
turbulence.

The kinetic energy density of the mean flow in the longitudinal plane 1/2
(
U 2 + W 2

)
is presented in the left-hand column of figure 5 and kinetic energy density of the
corresponding turbulence, 1/2(〈u2〉+〈w2〉), in the right-hand column. The initial levels
of kinetic energy of the mean flow are quite large due to the presence of surface waves,
and a logarithmic color scale is employed in order to encompass the entire dynamic
range of the kinetic energy density. The cloud of kinetic energy density for both the
mean and turbulent flows is seen to propagate downstream at a rate consistent with
the large coherent vortex generated by breaking.

The cloud of TKE reaches a depth of z∗ ≈ −0.12 at five wave periods after breaking
with a horizontal extent of approximately 0.83λc. The initial levels of TKE are seen
to decrease quite rapidly with time. The vertical white lines in figure 5 denote the
extent of the limits taken when windowing the data as described in § 2.2.5.
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Figure 1 shows a comparison between the TKE density at t∗ =5.58 and the
corresponding ensemble-averaged image of the seeded flow. The outline of the
turbulent cloud is delineated by the Et = 8.22 × 10−5 contour, shown in white. This
outline is overlaid on the image of the particles mixed down by the breaking event in
figure 1(b). Two distinct regions are seen just upstream and downstream of x∗ = 0.4.
The shallower upstream bump corresponds to the initial plunge point of the breaking
wave, while the downstream region is due to the subsequent splash up (cf. Bonmarin
1989; Rapp & Melville 1990; Chen et al. 1999).

Within a few wave periods the kinetic energy of the mean flow in the transverse
plane is approximately uniform across the tank. There is some horizontal variability
in the transverse TKE field, significantly less however than the inhomogeneity seen in
the longitudinal plane. It was thought that cross-stream structures might be generated
by a transverse instability similar to that seen by Loewen (1991), Lamarre (1993) and
Perlin et al. (1996). It is possible that cross-stream structures are generated by breaking
which then rapidly dissipate and thus would not be seen for the times investigated
here.

3.4. Reynolds stress

The Reynolds stresses transfer momentum from the surface wave field into the bulk
of the fluid. The Reynolds stress component in the longitudinal plane 〈uw〉 is shown
in figure 6 and is overwhelmingly negative, consistent with the findings of RM and
MVW. It is this mechanism through which currents are generated by breaking due to
the vertical flux of horizontal momentum lost from the waves.

In the absence of coherent transverse flow structures, 〈vw〉 in the transverse plane
is expected to be zero. Figure 7 shows the integrated Reynolds stress is essentially
zero in the four transverse planes with no net transport of momentum. The exception
to this is for small t∗ during which there may be transverse waves excited by breaking
that would break the symmetry of the flow.

MVW additionally used measurements of the Reynolds stress to infer a value of
the breaking parameter b as defined by Phillips (1985)(see also Duncan 1981, 1983).
For the sake of brevity we will not outline the process used by MVW to arrive at b.
Rather we simply will provide the reader with an overview and the results and refer
those interested in the details to the reference.

Phillips (1985) proposed a statistical description of breaking based on the
distribution by velocity of breaking fronts per unit area of ocean surface. The
average rate of energy loss per unit area of surface for breaking waves with velocities
in the range (c, c + dc) is then

ε(c) dc = bρg−1c5Λ(c) dc, (3.11)

where Λ(c) dc is the average length of breaking fronts per unit surface area, g gravity,
c the speed of the advancing front and b the dimensionless breaking parameter.
DML showed b to be dependent on the slope of the waves at breaking. MVW used
measurements of the Reynolds stress to estimate the breaking parameter, b.

Using Phillips’s (1985) distribution Λc the area swept out by breaking per unit
area is given by cτbΛ(c) dc, where τb is the duration of active breaking during which
momentum is transferred from the surface waves to the fluid. MVW approximated
the duration of breaking as a fraction of the wave period using data from RM.

Since the wave energy and momentum densities are related by M = C−1
c E, use of

(3.11) yields an estimate of b from the distribution of momentum flux as described
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Figure 6. The normalized Reynolds stress in the longitudinal plane, 〈uw〉. The stress is
predominately negative and corresponds to the vertical downward transport of positive
horizontal momentum.

by MVW,

b = J 2π

(0.67)3

∫∫
uw dx∗dz∗

C2
c

, (3.12)

where J is a numerical factor; Cc is the phase-speed of the centre wave component;
and 0.67 arises from the ratio of the rate of advance of the breaking front and the
centre phase speed of the wave packet.

An estimate of
∫∫

uwdx∗dz∗ is computed from a time series at fixed z∗ corresponding
to the depth of the maximum Reynolds stress for t∗ = 3.42 (z∗ = −0.03). The temporal
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Figure 7. The integrated normalized Reynolds stress in both the longitudinal and transverse
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∫∫
〈uw〉 dx dz correspond to a net downward transport of

positive horizontal momentum. The net transport in each transverse plane is essentially zero
except at small times (see § 3.4). The subscripts refer to the location of the cross-stream
measurement. The solid line is a t−3/4 fit to the integrated Reynolds stress in the longitudinal
plane.

spacing of the data presented is irregular, so we will fit a line to the integrated
Reynolds stress and use this to compute the time average with an even spacing (as for
figure 7). We find b = 0.015 which agrees within a factor of 1.5 with the measurement
of b = 0.022 by DML for the wave packet considered. The prediction of b based on
the inertial estimate of dissipation derived by DML is

b = χπ2−1/2 (hkc)
5/2 , (3.13)

where χ is a constant O(1) and hkc is the slope based on the height of the breaking
wave (see DML for definition). For plunging breaking waves, χ was found to be 0.45,
and hkc for the wave packet considered in these DPIV measurements was 0.21. The
value of b predicted by the model using (3.13) is then 0.021, as compared to b = 0.015
from (3.12).

3.5. Time-dependence of turbulent kinetic energy and Em

Figure 8(a) presents integrated quantities of the total kinetic energy Ĕ = Ĕt + Ĕm,
TKE Ĕt and the kinetic energy of the mean flow Ĕm, in the longitudinal plane in
which the breve denotes an area integral. The area over which the integration was
conducted was windowed horizontally over the limits shown in figure 5 and restricted
to z∗>−0.23. The kinetic energy is initially large due to the surface waves which
propagated through the measurement region. When t∗ ≈ 12, Ĕ and Ĕm begin to show
a t−1 dependence, which is consistent with the findings of Rapp & Melville (1990),
Chen et al. (1999) and Melville et al. (2002). The decay of Ĕt is slightly less rapid
with an approximate t−0.75 dependence. Prior to t∗ ≈ 12, there are still surface waves
within the measurement region. We attribute the slower decay rate of TKE to their
presence at the earlier times.

Figure 8(b) shows the integrated values of the TKE for both the full-field and
higher resolution mosaic DPIV, denoted by ĔtF and ĔtH respectively. The intent of the
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Figure 8. (a) Ĕ = Ĕm+Ĕt , Ĕm and Ĕt for the full-field DPIV measurements. The breve denotes

an area integral. (b) Comparison between TKE of the full-field (ĔtF ) and high-resolution

mosaic DPIV (ĔtH ).

full-field DPIV was to capture as large a range of scales as possible while resolving the
largest scales of the flow. As a result of this, we were unable to measure the smallest
scales; thus we employed a mosaic approach in order to resolve smaller length scales
than we could with the full-field measurements. In order to compare these two results
in the longitudinal plane, the full-field measurement is broken up into three windows
corresponding to the same field of view as the mosaic DPIV. The integrated energy
is calculated in each window, and these three estimates are then summed. Due to the
slight overlap between windows in the mosaic DPIV the magnitude of the integrated
TKE will be slightly higher in figure 8(b) than in figure 8(a), but the time dependence
will not change. The full-field measurements extend to within 6 mm of the surface,
while the mosaic DPIV is within 2.4 mm. The integrated TKE density curves have an
approximate t−n dependence for t∗ > 12.78, where 0.75 <n< 1, while for t∗ < 12.78
the decay is slower and approximately t−1/2.

3.5.1. Estimation of νT

The extent of the mixing caused by breaking can be better visualized by removing
the displacement of the surface by the waves. We step through each ensemble-averaged
image, column by column, and use the surface elevation to adjust each column up
or down relative to the ensemble-averaged water level to generate an image in
which the free surface is horizontal. These adjusted images are shown in figure 9
for t∗ = 0.54−2.70. The mixed region consists of bubbles entrained by the breaking
process and particles which have been mixed down from the surface. The boundary
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Figure 9. The raw ensemble-averaged image data (32 realizations) for t∗ = [0.54, 1.98, 2.70]
(a–c respectively). The region mixed by breaking consists of air entrained by breaking along
with tracer particles mixed down from the surface. Each image has been shifted vertically
column by column to give the vertical position relative to the free surface. (d ) The outline of the
mixed region for t∗ = 2.70 (c) superimposed with the boundary-layer thickness δ(x, t∗ = 2.70)
(solid line). Note that the large-scale structures survive the ensemble averaging. The dash-dotted
lines denote the boundary-layer thickness corresponding to the range of νT for the given mixed
region.

of the mixed layer shows an approximately x1/2 dependence. We can estimate an eddy
viscosity νT , using

νT (x, t) =
δ2(x, t)Cbf

x
, (3.14)

where δ is the thickness of the mixed layer; Cbf is the speed of the advancing breaking
front; and x is the distance from the front.

The length of the mixed region versus t∗ initially expands quite rapidly, Cbf = 0.67Cc,
where Cc is the centre phase speed of the packet. After t∗ ≈ 3 the length of the
mixed region expands more slowly, Cbf = 0.007Cc (see Drazen 2006, figure IV.32).
These results agree with the findings of RM, who found the initial speed to be
Cbf =0.7 − 0.8Cc, which decreased to Cbf =0.005 − 0.01Cc after three wave periods.
The area of the mixed region obtained from the raw image files in figure 9 is seen
to grow as t1/2 matching the time dependence found by RM (see also Drazen 2006,
figure IV.33).

The eddy viscosity is found by fitting the boundary-layer thickness to (3.14). The
thickness of the boundary layer is seen to oscillate between the coherent structures or
eddies in the ensemble-averaged flow, so a minimum and a maximum value of νT is
found corresponding to the range of δ(x). Figure 9(d ) shows the extracted boundary
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Figure 10. The non-normalized measured eddy viscosity, νT , as a function of normalized time
after breaking for t∗ � 2.70. The vertical bars represent the maximum and minimum values
of νT (t) (see figure 9d ), and the dashed line is a least squares fit of the data to a straight line.

layer for t∗ = 2.70 along with the boundary layers associated with the maximum and
minimum values of νT . The range of νT (t) is 1.2×10−4 to 7.9 × 10−4 m2 s−1 (figure 10).
The eddy viscosity is seen to increase linearly in time with a slope of 0.4 × 10−4 m2 s−2

for t∗ > 2.70 (figure 10).

4. Turbulent length scales
To aid in interpretation of the turbulence, it is useful to consider some representative

length scales of the turbulent flow. For a given t∗ and z∗, the longitudinal integral
length scale L11 is defined as

L11 =

∫ ∞

0

〈u(x + r)u(x)〉
〈u2(x)〉 dr, (4.1)

with u(x) being the longitudinal component of the turbulent velocity field at a specific
depth and time. The integral length scale is a measure of the decorrelation length
scale of the turbulence and is a characteristic length scale of the energetic eddies
within the flow. The length scale L11 grows in time as seen in figure 11(a) and is
evaluated at each time for both a fixed point within the flow, (x∗, z∗) = (0.58, −0.034),
and a location moving at the vertical speed of the coherent vortex, −6.9 × 10−4Cc.
At a fixed location, separation of decay caused by the propagation of the cloud from
that due to the loss of energy from the velocity field would be difficult. The average
horizontal speed of the cloud is 7 × 10−3Cc.

Another length scale derived from the velocity correlation is the Taylor microscale
λf . By expanding the velocity correlation at the origin, λf can be seen to be the
x -intercept of the parabola which osculates with the velocity correlation at the origin,

λf =

[
−1

2
f ′′(0)

]−1/2

. (4.2)
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Figure 11. (a) L11, (b) λf , (c) ε =30 νu′2/λ2
f and (d ) Reλ = (u′λf )/ν as functions of

non-dimensional time after breaking. For (a–c) the open symbols correspond to a fixed
point in the flow (x∗, z∗) = (0.58, −0.034), while the measurement depth of the solid symbols
followed the deepening of the TKE cloud. In (d ) the open and filled symbols are for Reλ at
z∗ = [−0.083, −0.034] respectively.

In homogeneous, isotropic turbulence (4.2) reduces to

λ2
f =

2u′2〈(
∂u

∂x

)2〉 , (4.3)

where u′ is the r.m.s. value of the fluid velocity in the x-direction. For the flow
considered here (4.3) was used to define λf in figure 11(b). The values of λf are
seen to decrease with time and are approximately L11/5. The dissipation rate in an
isotropic, homogeneous flow is given by

ε = 15ν
〈(∂u

∂x

)2〉
(4.4)

= 30ν
u′2

λ2
f

(4.5)

after substitution of (4.3) and is shown in figure 11(c). The flow here is however neither
isotropic nor homogeneous, so these measures are only approximations. Veron &
Melville (1999) and Melville et al. (2002) found dissipation rates of the same magnitude
using coherent acoustic Doppler sonar and PIV, respectively. Approximately 17 wave
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periods after breaking the estimate given by (4.5) was a factor of two larger than that
reported by Veron & Melville (1999).

Note that the dissipation rate presented in figure 11(c) represents the dissipation
rate for a homogeneous, isotropic flow with the same r.m.s. turbulence levels and
Taylor microscale as this flow and should not be confused with the actual dissipation
of the flow under consideration here. Despite the fact that our flow is not isotropic
or homogeneous, comparison of our results with flows that have similar turbulence
scales can be useful for order-of-magnitude estimates.

A Reynolds number based on the Taylor microscale is given by

Reλ =
u′λf

ν
. (4.6)

Values of Reλ for two depths are shown in figure 11(d ) as functions of time. The
value of Reλ is initially large and asymptotically approaches 100 with t∗ for for both
depths. For large values of Reλ in statistically stationary flows the separation between
the energy-containing scales and the dissipative scales grows, a consequence of which
is an enlarged inertial sub-range in which viscous effects are negligible (Pope 2000,
figure 6.20). However, we do not have a statistically stationary flow and a relatively
simple characterization of the conditions under which an inertial sub-range exists
may not be possible.

5. Wavenumber spectra
The instantaneous large-scale measurements of the flow are well suited for

computation of spectra over a large range of wavenumbers. The ensemble-averaged
one-sided wavenumber spectra are calculated using

Eii(kj , t) =
2

XM

M∑
m=1

|ûi(kj , t)|2 , (5.1)

where X is the spatial length of the signal; k is the wavenumber; M is the number
of realizations over which the spectrum is averaged; and ûi(kj , t) is the fast Fourier
transform (FFT) of ui(xj , t). Prior to computing (5.1) all datasets in the xi-direction
are detrended and windowed using a Tukey window with a taper ratio of 0.2. Due
to the inhomogeneity of the flow the limits of the window in the x1-direction are set
using the vertical lines seen in figure 5, so only the energetic portion of the flow is
considered. The spectra in the z∗-direction extend from the free surface to z∗ = − 0.23.

5.1. Measurements of E11 and E33

Spectra of E11 and E33 in the k1-direction are shown in figure 12(a–f ) for z∗ = −0.06.
The normalized times after breaking are the same as the first six times shown in the
velocity and TKE fields, t∗ = 3.42–50.22. We can see that for all t∗ shown, the flow
at low wavenumbers is anisotropic. The strain rate of the large eddies is comparable
to that of the mean flow, and since the mean flow is anisotropic (U >V, W ), the
large eddies are anisotropic. For figure 12(a, b), there is some indication of isotropy
for wavenumbers between 60 rad m−1 <k1 < 200 rad m−1, as the two spectra are
nearly equal in magnitude. Within this wavenumber range, E11(k1) = 0.78E33(k1)
for figure 12(a) and E11(k1) = 0.87E33(k1) for figure 12(b). For an isotropic flow,
E11(k1) = 3/4E33(k1) (Pope 2000); however we do not think that these results are
strong evidence for isotropy in this flow.
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Figure 12. Comparison between one-dimensional wavenumber spectra in the (a–f ) k1- and
(g–l ) k3-direction. The 95 % confidence levels are shown for each spectra at k1 = 10 rad m−1 or
k3 = 40 rad m−1. For each row the normalized time after breaking is constant and is denoted
in (g–l ). (a–f ) E11(k1) ( ) and E33(k1) (−−) at z∗ = − 0.06. (g–l ) E11(k3) (−−) and E33(k3)
( ) at x∗ =0.54 and E11(k3) (· · ·) and E33(k3) (− · −) at x∗ = 0.84. The solid line in each figure
has a slope of −5/3 and is kept at a fixed location.
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For the regime in which surface-wave-induced velocities dominate the velocity field,
t∗ < 12.78, there is evidence of an inertial sub-range. The width of the sub-range
decreases as the surface waves propagate away, and the coherent vortex becomes
apparent within the ensemble-averaged flow. In figure 12(d–f ) we see a region in
which the spectrum decreases less rapidly than k−5/3 before beginning to roll off
at k1 = 350–400 radm−1. These spectral ‘bumps’ have been reported previously in
the literature for both field measurements (Doron et al. 2001; Nimmo Smith, Katz
& Osborn 2005) and high-Reynolds-number flows in the laboratory (Saddoughi &
Veeravalli 1994). They have been attributed to a ‘bottleneck’ phenomenon in which
the spectral flux of energy from low wavenumbers exceeds the rate of dissipation at
the small scales, causing a build-up of energy near the boundary between an inertial
sub-range and the dissipation range.

The wavenumber spectra at x∗ = 0.54 and x∗ =0.84 are shown in figure 12(g–l )
for E11(k3) and E33(k3). At t∗ = 3.42 the core of the turbulent cloud is at x∗ ≈ 0.54.
For t∗ = 3.42 − 12.78 there is a marked difference at the low wavenumbers due to
strong vertical flows in the k3-direction caused by the surface waves. We also see
evidence of an inertial sub-range for t∗ = 3.42 and 12.78. The turbulent cloud is
propagating to the right, and as the flow evolves we expect the turbulent velocity at
the downstream location to be larger in magnitude for a given value of t∗ > 3.42, as
the cloud is advected towards x∗ =0.84, consistent with what is seen in figure 12(i–l ).
After the surface waves have passed, the difference in energy density near 12 rad m−1

diminishes, and between 200–300 rad m−1 the spectra at both locations begin to flatten
out. As for the spectra in the k1-direction, this may be caused by a build-up of energy
within these scales, as energy is transported down the spectrum at the larger scales
faster than it is dissipated at the smaller scales.

This is shown more clearly in figure 13, which shows E11(k1) for various values of
t∗ and z∗. A large inertial sub-range is present near the surface, which decreases for
later times and shows evidence of energy accumulating at larger wavenumbers. For k

within the inertial sub-range, an estimate of the dissipation rate can be found by

E11(k1) = C1ε
2/3k

−5/3
1 , (5.2)

where ε is the dissipation rate per unit mass and C1 is a constant shown experimentally
to be ≈ 0.5 (Sreenivasan 1995). We see that the magnitude of E11 decreases with depth;
so if (5.2) holds, then this would suggest that the dissipation rate should decrease
as well. If the flux of energy at a given time were approximately constant across
the depth of the turbulent region, then there could be a greater tendency towards
accumulation of energy with depth.

We can extend the spectra to higher wavenumbers by using wavenumber spectra
computed from the mosaic DPIV, which extends the Nyquist wavenumber from
k = 781 radm−1 out to k = 2026 rad m−1. The magnitudes of the spectra computed
from the mosaic DPIV vary due to the inhomogeneity of the turbulent cloud, but
overall they have the same spectral shape. The mosaic DPIV spectra shown in figure 14
do not exhibit the roll-off seen in the full-field spectra at k ≈ 400 radm−1 (in figure
14c–h). This would suggest that the approximate −5/3 slope seen in figure 12(c–f )
is not an extension of the inertial sub-range at high wavenumbers. In other words
energy is not being stored at wavenumbers within a larger apparent inertial sub-range.

6. Turbulent kinetic energy budget
The distribution of TKE is governed by (2.3). The pressure field cannot be measured,

and thus we cannot describe the pressure-work term. For large Reynolds numbers
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Figure 13. Spectra of u in the x1-direction, E11(k1), for t∗ = [3.42, 27.18, 43.02, 58.86] at
(a) z∗ = − 0.015, (b) z∗ = − 0.06, (c) z∗ = − 0.11 and (d ) z∗ = − 0.14. The solid black line has
a slope of −5/3, and its level is kept fixed for all four figures. Confidence levels of 95% are
shown at k1 = 10 rad m−1 for spectra at all depths.

the viscous transport term becomes smaller than the other transport terms and will
be neglected.

The dissipation term, ε, acts on scales near the Kolmogorov length scale defined as

ηk =

(
ν3

ε

)1/4

. (6.1)

Estimates of ε from the wavenumber spectra put the smallest Kolmogorov length scale
at ηk ≈ 0.4 mm, which is an order of magnitude smaller than the spatial resolution of
our velocity estimates. Thus we cannot measure ε directly at this resolution; however,
we can measure it indirectly. Earlier analysis in § 4 focused on estimating dissipation
based on homogeneous, isotropic flows with r.m.s. velocities and Taylor microscales
similar to those in our case. The tenuous existence of an inertial sub-range and the
fact that our flow is not isotropic or homogeneous emphasizes the necessity of finding
alternate methods of computing the dissipation rate.

Consider a volume that entirely encompasses the turbulent cloud on the boundaries
of which ui goes to zero (Ui is non-zero on the boundary due to the surface-wave-
induced velocity; see figure 2). If we take the integral of (2.3) over this volume we
obtain ∫

V

∂q

∂t
dV +

∫
S

(qUj ) · n dS = −
∫

V

〈uiuj 〉 Sij dV −
∫

V

ε dV , (6.2)

where q =1/2〈uiui〉. The turbulent-transport term can also be written in terms of
a surface integral, but it vanishes, since ui = 0 on the edges of the control volume.
We can then infer the volume-integrated dissipation rate from the balance of the
integrated evolution, production and advection terms.
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Figure 14. Comparison of E11(k1) for both the full-field measurements and mosaic DPIV at
(a–d ) t∗ = 3.42 and (e–h) t∗ =27.18; E11 from window 1 (· · ·), window 2 ( ) and window
3 (− · −). The full-field spectra are shown as grey lines. The panels correspond to four vertical
locations, (a, e) z∗ = − 0.019, (b, f ) z∗ = − 0.06, (c, g) z∗ = − 0.11 and (d, g) z∗ = − 0.15.
The solid black lines have a slope of k−5/3, and 95 % confidence limits are shown at
k1 = 30 rad m−1.

We can evaluate (6.2) in this plane after making some assumptions about the
transverse velocity ṽ. We assume that the flow is two-dimensional in the mean, so
〈ṽ〉 ≈ 0 and ∂〈〉/∂y terms vanish. The four locations at which we have (u, v, w) occur
within the extent of the turbulent cloud, so through comparison of the spatially and
temporally averaged values of q in both two and three dimensions at locations 1–4
we find that

q =
1.53

2
(〈u2〉 + 〈w2〉), (6.3)

where q is the full three-dimensional TKE density (see Appendix for further details).
The DPIV measurement region is considered to be two-dimensional in the mean,

so the volume and surface integrals become area and line integrals, multiplied by
a constant width. The horizontal extent of the integration is shown by the vertical
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Figure 15. Area-integrated values of selected terms in the TKE budget (m4 s−3). Terms
shown are evolution, advection, production, and the inferred dissipation (6.2).

white lines in figure 5, and the vertical extent is from z∗= − 0.23 to z∗ = 0.05 (in
order to completely encompass the free surface at times near breaking). The inferred
dissipation for t∗ =3.42−58.86 is shown in figure 15 and is seen to be larger in
magnitude than both the production and evolution terms. The production term
increases slightly between t∗ = 3.42 and t∗ = 5.58, consistent with the emergence of
the coherent vortex when the surface-wave-induced velocities have been removed
(see also Drazen 2006). For later times it suggests that there is little exchange of
energy between the coherent structure in the mean flow and the turbulent field (which
appears to simply advect the turbulence downstream) and that the main mechanism
of transfer of TKE occurs through the surface-wave-induced velocities.

6.1. Dissipation measurements

We will now compare the estimate of the integrated dissipation rate given in (6.2) with
two other methods. The energy-containing eddies of the flow have a representative
velocity u0 and length scale l0. To within an order of magnitude, the inertial estimate
of the dissipation rate εI is

εI ≈ u3
0

l0
. (6.4)

The outer velocity scaling will be defined as u0 ≡ q1/2, where q is the horizontally
averaged TKE density at a given time and depth as defined in (6.3). The horizontal
extent of the averaging here is defined by the width of the cloud and therefore
decreases with depth. The length scale l0 is given by the integral length scale (see
(4.1)). The expression (6.4) becomes

εI = χ
q

3
2

L11

, (6.5)
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where χ is a coefficient determined to be 0.46 in DML and εI denotes the dissipation
rate using the inertial estimate.

We can obtain an estimate of the dissipation rate by fitting a −5/3 line within
the inertial sub-range of the wavenumber spectra and evaluating (5.2). This will
be denoted by εS. This estimate requires the existence of an inertial sub-range, the
length of which was found in § 5 to decrease with both time and depth. If an inertial
sub-range is found, this method (along with εI) has the advantage of being computed
over scales which are well resolved by our measurements. These estimates are then
vertically averaged from the top to the bottom of the cloud. The inferred dissipation
from the integrated production and evolution terms will be denoted by εB (see (6.2)).
The area-averaged dissipation rates are shown in figure 16.

For t∗ < 12.78, εI, εS and εB all have an apparent t−3/2 dependence. After t∗ > 12.78,
εB follows a t−5/2 dependence, while εS and εI decay with a dependence closer to t−3/2.
This similarity between εI and εS is not unexpected, since both are based on the
assumption that energy is transferred from the large energy-containing scales of the
flow to the small dissipative scales of the flow, across an inertial sub-range.

The total dissipation rate of TKE per unit width is given by

Aε =
∂

∂t
Et , (6.6)

where A is the area over which TKE is dissipated and Et is the total TKE density.
The area of the breaking region has been found to grow as t1/2, consistent with the
findings of RM. We have computed Et at discrete locations which move with the
cloud. The time dependence has been found to be t−1, implying a t−2 dependence for
∂Et/∂t . Thus we expect a t−5/2 dependence for ε. We see this dependence holds for
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t∗ > 12.78 in figure 16. We have also shown that other terms in the TKE budget are
significant for t∗ < 12.78 (see figure 15), so a deviation from the predicted dependence
for these earlier times is not unexpected.

Using acoustic Doppler techniques, Veron & Melville (1999) found a t−n dependence
of the dissipation rate, with n= 1−1.25. These estimates however are at a single depth
and cannot be assumed to have the same dependence as our measure of ε, especially
due to the inhomogeneous nature of the turbulent cloud. Gemmrich & Farmer (2004)
found a t−4.3 dependence for ε. It should be noted that we and Veron & Melville (1999)
have considered single, laboratory breaking events, while Gemmrich & Farmer (2004)
measured ε from breaking waves in the field, and other processes could contribute to
the significant enhancement in the decay of the dissipation rate. RM used measures
of the time dependence of the post-breaking area and TKE to find that ε should
follow a t−5/2 dependence, consistent with our findings.

6.2. Balances in the turbulent kinetic energy budget

As stated previously, the measurements in the longitudinal plane encompass the entire
turbulent cloud and will be used to compute horizontally integrated terms in the TKE
budget, with the integration over the horizontal extent of the turbulent cloud. Despite
the large ensemble in the longitudinal plane, at later times the signals are still quite
noisy with the turbulent-transport term exhibiting the most noise. This is due to the
lower signal to noise ratio from the DPIV measurements as the magnitude of the
flow velocity decreases at large t∗. In order to separate the noise from the signal
we first compute the vertical wavenumber spectrum of the horizontally integrated
turbulent-transport term from z∗ = − 0.44 to z∗ = − 0.25, where the signal is entirely
noise, as it is in a region outside of the turbulent cloud.

A separation between the low-wavenumber end of the spectrum and the high-
wavenumber regime is seen to occur at k3 = 130 radm−1 (see Drazen 2006 for further
details). We then low-pass filter the horizontally integrated terms in the TKE budget,
using a running-mean filter with a width corresponding to k3 = 130 rad m−1.

The presence of surface waves within the measurement region complicates the
computation of these terms, as the location of the turbulent cloud changes with the
free surface as the waves pass. To simplify comparisons between terms the horizontal
integrals are cut off at a depth corresponding to the lowest point in the free surface
at a given value of t∗.

The horizontally integrated evolution, advection, production, turbulent transport
and dissipation are shown in figure 17 for t∗ = [3.42, 5.58, 8.46, 12.78, 17.10, 27.18].
The dissipation is computed using the inertial estimate defined in (6.5) and is only
shown over the depth of the cloud, as r.m.s. values of u were not computed below this.
Also given over the depth of the cloud is the residual obtained when the measured
terms are moved to the right-hand side of the TKE budget equation. We can see that
at t∗ = 3.42 the advection term dominates, due to the large vertical velocity associated
with the surface waves. By t∗ = 5.58 the advection term has changed sign, but the
remaining terms in the budget are now of the same approximate magnitude. For the
terms shown, there is an approximate balance between the evolution and advection
terms and also between the production, dissipation and turbulent-transport terms.
There is a predominately negative transport near the surface, which becomes positive
at depth. We see similar results for t∗ = 8.46 but with the advection term changing
sign near the surface while remaining positive at depth. The dissipation term has
also increased in magnitude and is the dominant term (along with the evolution)
for the remainder of the times considered. The approximately constant value of the
evolution term below z∗ = − 0.2 is attributed to the presence of a long wave in the
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Figure 17. Horizontal integrals of non-dimensional terms in the TKE budget in the
longitudinal plane for (a) t∗ = 3.42, (b) t∗ = 5.58, (c) t∗ =8.46, (d ) t∗ = 12.78, (e) t∗ =17.10 and
(f ) t∗ = 27.18. The flow was assumed to be two-dimensional in the mean (i.e. terms ∂〈〉/∂y = 0).
The terms shown are evolution ( ), advection ( ), production (−−), turbulent transport
(· · ·), dissipation using (6.5) (− · −) and residual (−−). Note the change in horizontal scale
between each sub-figure.

tank generated by the breaking process; a similar result is seen at t∗ = 17.10 and is
consistent with a long wave propagating upstream and reflecting off the paddle.

For t∗ > 12.78 we see similar profiles, with the advection term decreasing
significantly as the surface waves leave the measurement region. The production term
also decreases leaving the evolution, transport and dissipation terms as the remaining
dominant terms. As noted earlier, this change in the production term suggests that
after breaking the main exchange of energy with the turbulence is through the surface
waves and that the only further interaction between the mean and turbulent fields is
the slow advection downstream of the turbulence by the coherent vortex.
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These measurements contrast with Chang & Liu (1999; CL) who studied quasi-
periodic breaking using DPIV in the longitudinal plane along the centreline of a wave
tank. In order to account for v, a scaling factor derived from shear flows was used
(Svendsen 1987),

q =
1.33

2
(〈u2〉 + 〈w2〉). (6.7)

CL found an apparent balance between advection, production and dissipation within a
few wave periods. Their estimate of the dissipation rate was computed from a balance
of the remaining terms within the measurement region. The quasi-steady breaking
described by CL appears to be forced by the wavemaker, as the breaking occurs
less than a wavelength from the wavemaker, λ=1.21 m, xb = 0.38 m. This apparent
forcing (combined with the shallower depth of the water), the important role of the
bottom boundary condition and the quasi-periodic nature of their breaking yield
results which cannot be directly compared with our unsteady deep-water breaking.

In their stochastic model of breaking, Sullivan et al. (2004) presented terms in the
TKE budget for Couette flow and shear-driven flow as well as flow driven entirely by
breaking. The estimates of the energy budget terms show a distinct difference from
those obtained by CL. Consistent with our findings, the turbulent-transport term is
significant near the surface. Additionally they found that the pressure-transport term
is of the same order of magnitude as production. If the residual term given in our
figure 17 is representative of the pressure-work term, then we also see an approximate
balance between production and the pressure-transport term. While some of these
similarities support our findings it is important to note that the flow is qualitatively
different from what we measured in the laboratory. This is because their results
are based on multiple three-dimensional breaking events across their computational
domain, while we have a single two-dimensional (in the mean) breaking event. Further
numerical modelling may help to elucidate the role of pressure transport which is
currently not measurable using techniques described in this paper.

As an appendix to their paper on laboratory measurements, MVW presented
tentative estimates of the terms in the TKE budget; tentative because of the relatively
small ensemble used and the velocity field reconstruction using a collage of windows.
As for CL, MVW used an approximation for v to account for the unmeasured
out-of-plane velocity, using

q =
1.5

2
〈u2 + w2〉 (6.8)

which assumes that v2 = (u2 +w2)/2. To account for the dissipation rate the isotropic
estimate (4.5) was used, and the terms were then averaged horizontally. They presented
results between three and five wave periods after breaking with the shape and
relative magnitude of the horizontally integrated terms comparing well to our findings
considering the differences in the experiments. They found a relative balance between
the advection and transport terms between these times after breaking. These balances
however must be interpreted carefully as the surface-wave-induced velocity has been
shown to change the sign of the advection term (see figure 17(b, c)).

7. Discussion
7.1. Wavenumber spectra maxima

We have measured the turbulent velocity field beneath deep-water breaking waves
using a high-resolution DPIV system. The ability to directly image the whole flow
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obviates the need to reconstruct the flow field with a large number of windows and
permits computation of the wavenumber spectra as described in § 5.

The wavenumber spectra presented exhibit a feature in which the spectrum falls
off slower than k−5/3 for wavenumbers higher than the apparent inertial sub-range
in the k1- and k3-directions. These local maxima have also been seen previously
in both the field and the laboratory, using a variety of measurement techniques.
The feature persists when we extend the cutoff wavenumber from ≈ 700 rad m−1 to
≈ 2000 rad m−1 and is larger than can be explained by any residual wave motion in
the tank at those wavenumbers.

The range of Taylor microscale Reynolds numbers encountered here suggests that
the inertial sub-range, if it were to exist, should have a a bandwidth which is larger
by an order of magnitude than that seen for t∗ > 3.42 (Pope 2000). Due to the freely
decaying nature of the turbulence the Reynolds number may not be sufficiently large
to allow the traditional k−5/3 dependence within the inertial sub-range. The existence
of these local maxima, which yield limited inertial sub-ranges and the anisotropy,
underscore issues in estimating dissipation rates from the measured wavenumber
spectra. Alternate methods such as those used in § 6.1 may be more appropriate.

The source of the maxima is thought to be due to a build-up of energy in scales
near the boundary between a weak inertial sub-range and the dissipation range. The
cause of this build-up is thought to be from an inability of the flow to dissipate energy
faster than the rate at which energy is transported down from the larger scales.

8. Conclusions
We have presented measurements of the large-scale turbulent structure of breaking

waves in the laboratory using DPIV. We have provided a description of the breaking
process and the subsequent dynamics which will support numerical modelling efforts
such as those of Sullivan et al. (2004, 2007). Any insight into the complex nature
of these types of flow can serve as a valuable tool in guiding the modelling of the
post-breaking wave field.

The large coherent vortex seen by RM and MVW is seen here with a sufficient
spatial scale to image the whole vortex at once. The initial formation of the breaking
region is rapid, occurring within three wave periods after breaking. The depth of the
ensemble-averaged mixed region is seen to follow a x1/2 dependence and permits the
measurement of an eddy viscosity, νT .

The wavenumber spectra exhibit an inertial sub-range near the surface for small t∗.
A region in which the spectra become less steep than k−5/3 leads to the formation
of a local maximum. The formation of this local maximum appears to be consistent
with an imbalance between the energy flux from the large scales and the viscous
dissipation at small scales.

The experimental configuration allows us to measure all three components of
(u, v, w) at four vertical locations within the flow. Comparison of the TKE using
both (u, w) and (u, v, w) has shown that q = 1.53q ′, where q ′ is the TKE in the
longitudinal plane and q is the full three-dimensional TKE.

While the local dissipation rate ε = 2νsij sij could not be directly measured, we can
infer a value from an implied balance of terms in the volume-integrated TKE budget.
Comparisons of the inferred dissipation εB with integral measures of the dissipation
rate using inertial and spectral estimates show good agreement with the inertial and
spectral estimates having the benefit of being computed over scales easily resolved
with the current experimental set-up.
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The area-integrated TKE density is seen to follow an approximate t−0.75 dependence
while the surface waves are present and then begins to decay faster for t∗ > 12.78. The
advection term is significant for t∗ � 17.10 and is the dominant term at t∗ = 3.42, due
to the surface-wave-induced velocities. The turbulent-transport and evolution terms
are seen to be significant for t∗ � 5.58. Production is significant for 5.58 < t∗ < 17.10
and decreases in magnitude with time but is still non-zero for later times. The small
magnitude of production for larger t∗ implies that the main exchange of energy from
the mean field to the turbulence occurs via the velocities induced by the surface waves.
At later times the coherent vortex advects the turbulent cloud downstream.

The breaking parameter discussed at length in DML was estimated from the
distribution of momentum flux using the Reynolds stress in figure 6 using the
methodology of MVW. For the experimental conditions used here, b =0.015, while
b measured by DML was b = 0.022. The inertial scaling of wave dissipation due to
breaking developed by DML predicts b =0.021 (see figure 13 in that work). Small
errors in estimating the speed of the advancing front can become significant when
estimating b and could account for some of the variability found.

We thank our colleagues Charly Coughran, Dave Agliettei and John Lyons at the
Hydraulics Laboratory at the Scripps Institution of Oceanography for assistance in
setting up the experiments and maintaining the facility. We thank Fabrice Veron for
helpful suggestions regarding various aspects of the experiments and data analysis.
DAD completed this work while he was a postdoctoral researcher in the department
of mathematics at the University of Oslo in Oslo, Norway. This work was supported
by NSF grants CTS-0215638 and OCE-0242083 to WKM.

Appendix. Comparison of turbulent kinetic energy density in two
and three dimensions

The DPIV technique used here gives only two components of the flow velocity
vector. The mean flow can be considered two-dimensional, but the turbulence is
inherently three-dimensional, and the missing component needs to be accounted for
in the absence of out-of-plane measurements.

Svendsen (1987) presented measurements of TKE under surf-zone waves and argued
that they exhibited characteristics of plane wakes based on the results of Battjes &
Sakai (1981) from quasi-steady breaking. To account for the transverse v component,
the relative strengths of (u2, v2, w2) for a plane wake were used and the TKE density, q ,
was assumed to be

q =
1.33

2
(〈u2〉 + 〈w2〉). (A 1)

CL used this estimate of q to account for the missing component v in DPIV
measurements of quasi-periodic breaking in the laboratory. RM presented LDA
measurements of unsteady breaking in the laboratory and used 〈v2〉 = 〈w2〉, since
〈u2〉 > 〈w2〉.

Previously MVW made the assumption

〈v2〉 ≈ 1

2
(〈u2〉 + 〈w2〉) (A 2)

which yields

q =
1.5

2
(〈u2〉 + 〈w2〉). (A 3)



Turbulence and mixing in unsteady breaking 117

100 101 102

10–4

t*

T
u
rb

u
le

n
t 

k
in

et
ic

 e
n
er

g
y
 d

en
si

ty
 (

m
2
 s–

2
)

q = 1/2 (�u2� + �v2� + �w2�)
q′ = 1.53 (1/2(�u2� + �w2�))
q′′ = 1.66 (1/2(�v2� + �w2�))

Figure 18. Comparison between the area-averaged two-dimensional estimate of TKE
density in the longitudinal plane q ′ =1.53(1/2(〈v2〉 + 〈w2〉)) and the transverse plane
q ′′ = 1.66(1/2(〈v2〉 + 〈w2〉)) as well as the area-averaged three-dimensional measurement of q .

The present measurements allow comparison of the estimate of q from the
longitudinal plane with the full three-dimensional field at the four cross-stream
locations. To estimate the necessary scaling factor in each plane we first average
vertically and then horizontally,

q, q ′, q ′′ =
1

Z(x∗
2 − x∗

1 )

∫ x∗
2

x∗
1

∫ η

−H

q, q ′, q ′′ dz∗ dx∗, (A 4)

where Z = η + H ; x1, x2 are the horizontal limits of integration; and the overbar
denotes an area average. The two-dimensional TKE density in the longitudinal plane
is given by q ′ = 1/2〈u2 + w2〉 and by q ′′ = 1/2〈v2 + w2〉 in the transverse plane. The
three-dimensional TKE density, q , is estimated by

q =
1

2

(〈
u2 +

w|2L
2

〉
+

〈
v2 +

w|2T
2

〉)
, (A 5)

where w|L and w|T are measurements of w in the longitudinal and transverse planes
respectively.

The relative magnitude of u, v and w can be seen to change with time, so we take
the temporal average to define a mean scaling factor,

1

t2 − t1

∫ t2

t1

q

q ′ dt = 1.53, (A 6)

1

t2 − t1

∫ t2

t1

q

q ′′ dt = 1.66. (A 7)

A comparison between the mean value of q(t), 1.53 q ′(t) and 1.66 q ′′ is shown in
figure 18.
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